Sains Malaysiana 54(8)(2025): 1901-1912

http://doi.org/10.17576/jsm-2025-5408-03

 

Inhibitory Effect of Trichoderma spp. Causing Green Mold Disease on the Edible Mushroom Pleurotus pulmonarius and Pleurotus floridanus  

(Kesan Perencatan terhadap Pertumbuhan Trichoderma spp. yang Menyebabkan Penyakit Kulat Hijau pada Pleurotus pulmonarius dan Pleurotus floridanus)

 

SHAN WAN SWAN1,2, FASEHAH MOHD MULANA1,2, JAYA SEELAN SATHIYA SEELAN1,3 & TAN YEE SHIN1,2,*

 

1Mushroom Research Centre, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

3Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS 88400 Kota Kinabalu, Sabah, Malaysia

 

Diserahkan: 13 Ogos 2024/Diterima: 3 Jun 2025

 

ABSTRACT

The popular cultivated edible oyster mushrooms in Malaysia, Pleurotus pulmonarius(grey oyster mushroom) and Pleurotus floridanus(white oyster mushroom), are susceptible to green mold disease caused by Trichoderma spp. The decline of the quality and yield production of the mushrooms up to 100% has been frequently observed due to infection by Trichoderma. The objective of this study was to investigate the competitive inhibition of Trichoderma spp. isolated from the farm with Pleurotus spp. Nine strains of Trichoderma were cultured in vitro with Pleurotus on potato dextrose agar and the radial growth as well as mycelial diameter growth were recorded. The direct plate assay results showed that T. koningiopsisand T. harzianumwere the most pathogenic strains against P. pulmonarius and P. floridanus by overgrowing and replacing the mycelia, respectively, due to space competition and nutrient suppression. The bi-plate Petri dish approach for assessing contactless inhibition of Trichoderma spp. against Pleurotus spp. demonstrated that T. asperellum, T. ghanense, and T. koningiopsiswere able to cross over the partition and inhibit P. pulmonariusmycelium. Meanwhile, inverted plate assay demonstrated that T. ghanense and T. reeseiinhibited P. pulmonarius mycelia, respectively, indicating contactless inhibition of Pleurotus by Trichoderma. When tested with P. floridanus, only T. ghanensedemonstrated inhibition in bi-plate Petri dish method and inverted plate assay. In summary, all nine Trichoderma spp. suppressed Pleurotus growth in varying degrees. Thus, besides competing with mushroom mycelia for nutrients and space, Trichoderma sp. could also release volatile organic compounds that act without direct contact.

Keywords: Green mold; inhibition; mushroom; pathogenic

 

ABSTRAK

Cendawan Pleurotus pulmonarius (Tiram kelabu) dan Pleurotus floridanus (Tiram putih) adalah cendawan yang paling digemari sebagai makanan dan ditanam di Malaysia, tetapi sering terdedah kepada penyakit kulat hijau yang disebabkan oleh Trichoderma spp. Jangkitan oleh Trichoderma sp. ini biasanya mengakibatkan kemerosotan kualiti dan hasil cendawan sehingga 100%. Objektif utama penyelidikan ini adalah untuk mengkaji kesan perencatan secara kompetitif oleh Trichoderma spp. yang dipencilkan daripada ladang dengan Pleurotus spp. Sembilan strain Trichoderma dikulturkan secara in vitro dengan Pleurotus pada agar kentang dektrosa sebelum pertumbuhan radial serta jarak jejari miselia diukur. Keputusan ujian plat langsung menunjukkan bahawa T. koningiopsis dan T. harzianum masing-masing adalah strain yang paling patogen terhadap P. pulmonarius dan P. floridanus dengan pertindihan pertumbuhan miselia berlebihan disebabkan oleh persaingan ruang dan kekurangan nutrien. Bagi ujian dwi-piring petri pula, penilaian adalah berdasarkan kesan perencatan tanpa sentuhan oleh Trichoderma spp. terhadap Pleurotus spp. dengan T. asperellum, T. ghanense dan T. koningiopsis mampu menyeberangi penghadang dan merencat pertumbuhan miselia P. pulmonarius. Sementara itu, ujian piring terbalik menunjukkan bahawa T. ghanense dan T. reesei menindas miselia P. pulmonarius, ini membuktikan kesan perencatan boleh berlaku tanpa sentuhan oleh Trichoderma sp. terhadap Pleurotus sp.. Apabila diuji dengan P. floridanus, keputusan menunjukkan hanya T. ghanense merencat pertumbuhan miselia dalam kedua-dua ujian Petri dwi-piring dan piring terbalik. Kesimpulannya, kesemua sembilan species Trichoderma merencat pertumbuhan Pleurotus dalam kadar yang berbeza. Oleh itu, selain bersaing untuk nutrien dan ruang dengan miselia cendawan, Trichoderma spp. juga menghasilkan sebatian organik mudah meruap yang aktif walaupun tanpa interaksi fizikal.

Kata kunci: Cendawan; kulat hijau; patogen; perencatan

 

RUJUKAN

Adebayo, E.A. & Oloke, J. 2017. Oyster mushroom (Pleurotus species); A natural functional food. Journal of Microbiology, Biotechnology and Food Sciences 7: 254-264.

Adebayo, E.A., Oloke, J.K., Yadav, A., Barooah, M. & Bora, T.C. 2013. Improving yield performance of Pleurotus pulmonarius through hyphal anastomosis fusion of dikaryons. World Journal of Microbiology and Biotechnology 29: 1029-1037.

Ajis, A.H., Tan, Y.S. & Chai, L.C. 2024. Green mould contamination of Pleurotus pulmonarius cultivation in Malaysia: Unravelling causal agents and water source as critical factors. Fungal Biology 128(7): 2197-2206.

Allaga, H., Zhumakayev, A., Büchner, R., Kocsubé, S., Szűcs, A., Vágvölgyi, C., Kredics, L. & Hatvani, L. 2021. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy 11(12): 2434.

An, X-Y., Cheng, G-H., Gao, H-X., Li, X-F., Yang, Y., Li, D. & Li, Y. 2022. Phylogenetic analysis of Trichoderma species associated with green mold disease on mushrooms and two new pathogens on Ganoderma sichuanense. Journal of Fungi 8(7): 704.

Badalyan, S., Innocenti, G. & Garibyan, N. 2002. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathologia Mediterranea 41: 220-225.

Bakratsas, G., Polydera, A., Katapodis, P. & Stamatis, H. 2021. Recent trends in submerged cultivation of mushrooms and their application as a source of nutraceuticals and food additives. Future Foods 4: 100086.

Błaszczyk, L., Siwulski, M., Sobieralski, K. & Frużyńska-Jóźwiak, D. 2013. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiologica 58(4): 325-333.

Chen, X., Zhou, X., Zhao, J., Tang, X., Pasquali, M., Migheli, Q., Berg, G. & Cernava, T. 2021. Occurrence of green mold disease on Dictyophora rubrovolvata caused by Trichoderma koningiopsis. Journal of Plant Pathology 103(3): 981-984.

Choi, I-Y., Joung, G-T., Ryu, J., Choi, J-S. & Choi, Y-G. 2003. Physiological characteristics of green mold (Trichoderma spp.) isolated from oyster mushroom (Pleurotus spp.). Mycobiology 31(3): 139-144.

Colavolpe, M.B., Mejía, S.J. & Albertó, E. 2014. Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Brazilian Journal of Microbiology 45: 1263-1270.

Dang, H., Kong, Q., Winchester, W., Wan, X., Lei, Y., Zhang, H., Zhao, Y., Liu, X., Xu, B., Zhang, B. & Wang, Z. 2023. Isolation, identification, and pathogenic effects of Trichoderma spp. from Auricularia auricula. Advanced Composites and Hybrid Materials 6: 96.

Department of Agriculture. 2022. Industrial Crops Statistics Malaysia. Putrajaya: Kementerian Pertanian dan Keterjaminan Makanan.  

Effiong, M.E., Umeokwochi, C.P., Afolabi, I.S. & Chinedu, S.N. 2023. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Frontiers in Nutrition 10: 1279208.

Food and Agriculture Organization of the United Nations. 2022. Production/production indices - metadata. FAO Global Statistical Yearbook.

Grand View Research. 2022. Market Analysis Report.

Gualtieri, L., Monti, M.M., Mele, F., Russo, A., Pedata, P.A. & Ruocco, M. 2022. Volatile organic compound (VOC) profiles of different Trichoderma species and their potential application. Journal of Fungi 8(10): 989.

Hatvani, L., Antal, Z., Manczinger, L., Szekeres, A., Druzhinina, I.S., Kubicek, C.P., Nagy, A., Nagy, E., Vágvölgyi, C. & Kredics, L. 2007. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderma species. Phytopathology 97(4): 532-537.

Illuri, R., Eyeni, M., Kumar, M., Babu, R.S., Prema, P., Nguyen, V.H., Bukhari, N.A., Hatamleh, A.A. & Balaji, P. 2022. Bio-prospective potential of Pleurotus djamor and Pleurotus florida mycelial extracts towards Gram positive and Gram negative microbial pathogens causing infectious disease. Journal of Infection and Public Health 15(2): 297-306.

Iqbal, S., Ashfaq, M., Malik, A., Khan, K. & Mathew, P. 2017. Isolation, preservation and revival of Trichoderma viride in culture media. Journal of Entomology and Zoology Studies 5(3): 1640-1646.

Islam, T., Zakaria, Z., Hamidin, N. & Ishak, M. 2017. Selection and cultivation of oyster mushroom for the indoor controlled environment in Malaysia and similar ecological region. MAYFEB Journal of Agricultural Science 1: 14-22.

Jayalal, R. & Adikaram, N. 2007. Influence of Trichoderma harzianum metabolites on the development of green mould disease in the oyster mushroom. Journal of Science (Biological Sciences) 36(1): 53-60.

Kamm, J.A., Buttery, R.G. & Robinson, W.H. 1987. An attractant for mushroom flies (Diptera: Phoridae). Journal of the New York Entomological Society 95(1): 19-22.

Kim, S-W., Kim, S., Lee, H-J., Park, J-W. & Ro, H-S. 2013. Isolation of fungal pathogens to an edible mushroom, Pleurotus eryngii, and development of specific ITS primers. Mycobiology 41(4): 252-255.

Kredics, L., Garcia Jimenez, L., Naeimi, S., Czifra, D., Urbán, P., Manczinger, L., Vágvölgyi, C. & Hatvani, L. 2010. A challenge to mushroom growers: The green mould disease of cultivated champignons. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, edited by Méndez-Vilas, A. FORMATEX. pp. 295-305.

Krupke, O., Castle, A. & Rinker, D. 2004. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Mycological Research 107(12): 1467-1475.

Lee, S.H., Jung, H.J., Hong, S.B., Choi, J.I. & Ryu, J.S. 2020. Molecular markers for detecting a wide range of Trichoderma spp. that might potentially cause green mold in Pleurotus eryngii. Mycobiology 48(4): 313-320.

Luković, J., Milijašević-Marčić, S., Hatvani, L., Kredics, L., Szűcs, A., Vágvölgyi, C., Duduk, N., Vico, I. & Potočnik, I. 2020. Sensitivity of Trichoderma strains from edible mushrooms to the fungicides prochloraz and metrafenone. Journal of Environmental Science and Health, Part B 56(1): 54-63.

Manjit, S., Kamal, S. & Sharma, V.P. 2021. Status and trends in world mushroom production-III-world production of different mushroom species in 21st century. Mushroom Research 29(2): 75.

Mumpuni, A., Sharma, H.S.S. & Brown, A.E. 1998. Effect of metabolites produced by Trichoderma harzianum biotypes and Agaricus bisporus on their respective growth radii in culture. Applied and Environmental Microbiology 64(12): 5053-5056.

Naser, A., Aljanabi, H., Al-Mashhady, F.R., Al-Janabi, J. & Al-Shujairi, A. 2022. Antagonistic activities of bioagent fungi Trichoderma harzianum and Pleurotus ostreatus against three species of Fusarium in cucumber plants. Asia-Pacific Journal of Molecular Biology and Biotechnology 30(1): 12-21.

Park, M.S., Bae, K.S. & Yu, S.H. 2006. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34(3): 111-113.

Ponnusamy, A., Ajis, A.H., Tan, Y.S. & Chai, L.C. 2021. Dynamics of fungal and bacterial microbiome associated with green‐mould contaminated sawdust substrate of Pleurotus pulmonarius (grey oyster mushroom). Journal of Applied Microbiology 132(3): 2131-2143.

Qiu, Z., Wu, X., Zhang, J. & Huang, C. 2017. High temperature enhances the ability of Trichoderma asperellum to infect Pleurotus ostreatus mycelia. PLoS ONE 12(10): e0187055.

Rosmiza, M., Davies, W., Aznie, R., Jabil, M. & Mazdi, M. 2016. Prospects for increasing commercial mushroom production in Malaysia: Challenges and opportunities. Mediterranean Journal of Social Sciences 7(1): 406-415.

Ruangwong, O-U., Wonglom, P., Suwannarach, N., Kumla, J., Thaochan, N., Chomnunti, P., Pitija, K. & Sunpapao, A. 2021. Volatile organic compound from Trichoderma asperelloides TSU1: Impact on plant pathogenic fungi. Journal of Fungi 7(3): 187.

Samuels, G.J., Ismaiel, A., Mulaw, T.B., Szakacs, G., Druzhinina, I.S., Kubicek, C.P. & Jaklitsch, W.M. 2012. The Longibrachiatum clade of Trichoderma: A revision with new species. Fungal Diversity 55: 77-108.

Šašić Zorić, L., Janjušević, L., Djisalov, M., Knežić, T., Vunduk, J., Milenković, I. & Gadjanski, I. 2023. Molecular approaches for detection of Trichoderma green mold disease in edible mushroom production. Biology 12(2): 299.

Sharma, S.R. & Vijay, B.Y. 1996. Yield loss in Pleurotus spp. caused by Trichoderma viride. Mushroom Research 5: 19-22.

Sobieralski, K., Siwulski, M., Kommon-Żelazowska, M., Błaszczyk, L., Sas-Golak, I. & Frużyńska-Jóźwiak, D. 2012. Impact of Trichoderma pleurotum and T. pleuroticola isolates on yielding of Pleurotus ostreatus (FR.) Kumm. Journal of Plant Protection Research 52(1): 165-168.

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M.S., Ramakrishnan, M., Landi, M., Araniti, F. & Sharma, A. 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants 9(6): 762.

Toral, L., Rodriguez Gonzalez, M.A., Martínez-Checa, F., Montaño, A., Cortés Delgado, A., Smolinska, A., Llamas, I. & Sampedro, I. 2021. Identification of volatile organic compounds in extremophilic bacteria and their effective use in biocontrol of postharvest fungal phytopathogens. Frontiers in Microbiology 12: 773092.

Wang, G., Cao, X., Ma, X., Guo, M., Liu, C., Yan, L. & Bian, Y. 2016. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Microbiologyopen 5(4): 709-718.

Wang, M. & Zhao, R. 2023. A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. Journal of Future Foods 3(1): 1-7.

Wang, X-M., Zhang, J., Wu, L-H., Zhao, Y-L., Li, T., Li, J-Q., Wang, Y-Z. & Liu, H-G. 2014. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry 151: 279-285.

 

*Pengarang untuk surat-menyurat; email: tanyeeshin@um.edu.my

 

 

 

 

 

 

 

           

sebelumnya